Decompositions of All Different, Global Cardinality and Related Constraints
نویسندگان
چکیده
We show that some common and important global constraints like ALL-DIFFERENT and GCC can be decomposed into simple arithmetic constraints on which we achieve bound or range consistency, and in some cases even greater pruning. These decompositions can be easily added to new solvers. They also provide other constraints with access to the state of the propagator by sharing of variables. Such sharing can be used to improve propagation between constraints. We report experiments with our decomposition in a pseudo-Boolean solver.
منابع مشابه
Efficient Propagators for Global Constraints
We study in this thesis three well known global constraints. The All-Different constraint restricts a set of variables to be assigned to distinct values. The global cardinality constraint (GCC) ensures that a value v is assigned to at least lv variables and to at most uv variables among a set of given variables where lv and uv are non-negative integers such that lv ≤ uv. The Inter-Distance cons...
متن کاملThe All Different and Global Cardinality Constraints on Set, Multiset and Tuple Variables
We describe how the propagator for the All-Different constraint can be generalized to prune variables whose domains are not just simple finite domains. We show, for example, how it can be used to propagate set variables, multiset variables and variables which represent tuples of values. We also describe how the propagator for the global cardinality constraint (which is a generalization of the A...
متن کاملAn Algebra for Periodic Rhythms and Scales
This paper shows how scale vectors (which can represent either pitch or rhythmic patterns) can be written as a linear combination of columns of scale matrices, thus decomposing the scale into musically relevant intervals. When the scales or rhythms have different cardinality, they can be compared using a canonical form closely related to Lyndon words. The eigenvalues of the scale matrix are equ...
متن کاملAn open question on the existence of Gabor frames in general linear position
Uncertainty principles for functions defined on finite Abelian groups generally relate the cardinality of a function to the cardinality of its Fourier transform. We examine how the cardinality of a function is related to the cardinality of its short–time Fourier transform. We illustrate that for some cyclic groups of small order, both, the Fourier and the short–time Fourier case, show a remarka...
متن کاملGlobal Constraints
Constraint programming (CP) is mainly based on filtering algorithms; their association with global constraints is one of the main strengths of CP. This chapter is an overview of these two techniques. Some of the most frequently used global constraints are presented. In addition, the filtering algorithms establishing arc consistency for two useful constraints, the alldiff and the global cardinal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009